Photosynthesis

8.2.1 Draw and label a diagram showing the structure of a chloroplast as seen in electron micrographs.

Figure 8.2.1 - Chloroplast

8.2.2 State that photosynthesis consists of light-dependent and light- independent reactions.

Photosynthesis consists of light-dependent and light-independent reactions.

8.2.3 Explain the light-dependent reactions.

Photosynthesis occurs inside chloroplasts. Chloroplasts contain chlorophyll, a green pigment found inside the thylakoid membranes. These chlorophyll molecules are arranged in groups called photosystems. There are two types of photosystems, Photosystem II and Photosystem I. When a chlorophyll molecule absorbs light, the energy from this light raises an electron within the chlorophyll molecule to a higher energy state. The chlorophyll molecule is then said to be photoactivated. Excited electron anywhere within the photosystem are then passed on from one chlorophyll molecule to the next until they reach a special chlorophyll molecule at the reaction centre of the photosystem. This special chlorophyll molecule then passes on the excited electron to a chain of electron carriers. 

The light-dependent reactions starts within Photosystem II. When the excited electron reaches the special chlorophyll molecule at the reaction centre of Photosystem II it is passed on to the chain of electron carriers. This chain of electron carriers is found within the thylakoid membrane. As this excited electron passes from one carrier to the next it releases energy. This energy is used to pump protons (hydrogen ions) across the thylakoid membrane and into the space within the thylakoids. This forms a proton gradient. The protons can travel back across the membrane, down the concentration gradient, however to do so they must pass through ATP synthase. ATP synthase is located in the thylakoid membrane and it uses the energy released from the movement of protons down their concentration gradient to synthesise ATP from ADP and inorganic phosphate. The synthesis of ATP in this manner is called non-cyclic photophosphorylation (uses the energy of excited electrons from photosystem II) .

The electrons from the chain of electron carriers are then accepted by Photosystem I. These electrons replace electrons previously lost from Photosystem I. Photosystem I then absorbs light and becomes photoactivated. The electrons become excited again as they are raised to a higher energy state. These excited electrons then pass along a short chain of electron carriers and are eventually used to reduce NADPin the stroma.  NADPaccepts two excited electrons from the chain of carriers and one Hion from the stroma to form NADPH. 

If the light intensity is not a limiting factor, there will usually be a shortage of NADP+ as NADPH accumulates within the stroma (see light independent reaction). NADP+ is needed for the normal flow of electrons in the thylakoid membranes as it is the final electron acceptor. If NADP+ is not available then the normal flow of electrons is inhibited. However, there is an alternative pathway for ATP production in this case and it is called cyclic photophosphorylation. It begins with Photosystem I absorbing light and becoming photoactivated. The excited electrons from Photosystem I are then passed on to a chain of electron carriers between Photosystem I and II. These electrons travel along the chain of carriers back to Photosystem I and as they do so they cause the pumping of protons across the thylakoid membrane and therefore create a proton gradient. As explained previously, the protons move back across the thylakoid membrane through ATP synthase and as they do so, ATP is produced. Therefore, ATP can be produced even when there is a shortage of NADP+

In addition to producing NADPH, the light dependent reactions also produce oxygen as a waste product. When the special chlorophyll molecule at the reaction centre passes on the electrons to the chain of electron carriers, it becomes positively charged. With the aid of an enzyme at the reaction centre, water molecules within the thylakoid space are split. Oxygen and H+ ions are formed as a result and the electrons from the splitting of these water molecules are given to chlorophyll. The oxygen is then excreted as a waste product. This splitting of water molecules is called photolysis as it only occurs in the presence of light.

8.2.4 Explain photophosphorylation in terms of chemiosmosis.

Photophosphorylation is the production of ATP using the energy of sunlight. Photophosphorylation is made possible as a result of chemiosmosis. Chemiosmosis is the movement of ions across a selectively permeable membrane, down their concentration gradient. During photosynthesis, light is absorbed by chlorophyll molecules. Electrons within these molecules are then raised to a higher energy state. These electrons then travel through Photosystem II, a chain of electron carriers and Photosystem I. As the electrons travel through the chain of electron carriers, they release energy. This energy is used to pump hydrogen ions across the thylakoid membrane and into the space within the thylakoid. A concentration gradient of hydrogen ions forms within this space. These then move back across the thylakoid membrane, down their concentration gradient through ATP synthase. ATP synthase uses the energy released from the movement of hydrogen ions down their concentration gradient to synthesise ATP from ADP and inorganic phosphate.

8.2.5 Explain the light-independent reactions.

The light-independant reactions of photosynthesis occur in the stroma of the chloroplast and involve the conversion of carbon dioxide and other compounds into glucose. The light-independent reactions can be split into three stages, these are carbon fixation, the reduction reactions and finally the regeneration of ribulose bisphosphate. Collectively these stages are known as the Calvin Cycle. 

During carbon fixation, carbon dioxide in the stroma (which enters the chloroplast by diffusion) reacts with a five-carbon sugar called ribulose bisphosphate (RuBP) to form a six-carbon compound. This reaction is catalysed by an enzyme called ribulose bisphosphate carboxylase (large amounts present within the stroma), otherwise known as rubisco. As soon as the six-carbon compound is formed, it splits to form two molecules of glycerate 3-phosphate. Glycerate 3-phosphate is then used in the reduction reactions.

Glycerate 3-phosphate is reduced during the reduction reactions to a three-carbon sugar called triose phosphate. Energy and hydrogen is needed for the reduction and these are supplied by ATP and NADPH + H+ (both produced during light-dependent reactions) respectively. Two triose phosphate molecules can then react together to form glucose phosphate. The condensation of many molecules of glucose phosphate forms starch which is the form of carbohydrate stored in plants. However, out of six triose phosphates produced during the reduction reactions, only one will be used to synthesise glucose phosphate. The five remaining triose phosphates will be used to regenerate RuBP. 

The regeneration of RuBP is essential for carbon fixation to continue. Five triose phosphate molecules will undergo a series of reactions requiring energy from ATP, to form three molecules of RuBP. RuBP is therefore consumed and produced during the light-independent reactions and therefore these reactions form a cycle which is named the Calvin cycle.

8.2.6 Explain the relationship between the structure of the chloroplast and its function.

The stroma - Contains many enzymes, including rubisco, which are important for the reactions of the Calvin cycle.

The thylakoids - Have a large surface area for light absorption and the space within them allows rapid accumulation of protons.

8.2.7 Explain the relationship between the action spectrum and the absorption spectrum of photosynthetic pigments in green plants.

The action spectrum of photosynthesis is a graph showing the rate of photosynthesis for each wavelength of light. The rate of photosynthesis will not be the same for every wavelength of light. The rate of photosynthesis is the least with green-yellow light (525 nm-625 nm). Red-orange light (625nm-700nm) shows a good rate of photosynthesis however the best rate of photosynthesis is seen with violet-blue light (400nm-525nm). 

An absorption spectrum is a graph showing the percentage of light absorbed by pigments within the chloroplast, for each wavelength of light.  An example is the absorption spectrum of chlorophyll a and b. The best absorption is seen with violet-blue light. There is also good absorption with red-orange light. However most of the green-yellow light is reflected and therefore not absorbed. This wavelength of light shows the least absorption. 

As we can see, there is a close relationship between the action spectrum and absorption spectrum of photosynthesis. There are many different types of photosynthetic pigments which will absorb light best at different wavelengths. However the most abundant photosynthetic pigment in plants is chlorophyll and therefore the rate of photosynthesis will be the greatest at wavelengths of light best absorbed by chlorophyll (400nm-525nm corresponding to violet-blue light). Very little light is absorbed by chlorophyll at wavelengths of light between 525nm and 625 (green-yellow light) so the rate of photosynthesis will be the least within this range. However, there are other pigments that are able to absorb green-yellow light such as carotene. Even though these are present in small amounts they allow a low rate of photosynthesis to occur at wavelengths of light that chlorophyll cannot absorb.

8.2.8 Explain the concept of limiting factors in photosynthesis, with reference to light intensity, temperature and concentration of carbon dioxide.

A limiting factor is a factor that controls a process. Light intensity, temperature and carbon dioxide concentration are all factors which can control the rate of photosynthesis. Usually, only one of these factors will be the limiting factor in a plant at a certain time. This is the factor which is the furthest from its optimum level at a particular point in time. If we change the limiting factor the rate of photosynthesis will change but changes to the other factors will have no effect on the rate. If the levels of the limiting factor increase so that this factor is no longer the furthest from its optimum level, the limiting factor will change to the factor which is at that point in time, the furthest from its optimum level. For example, at night the limiting factor is likely to be the light intensity as this will be the furthest from its optimum level. During the day, the limiting factor is likely to switch to the temperature or the carbon dioxide concentration as the light intensity increases. 

So how can these factors have an effect on the rate of photosynthesis? Lets start off with the light intensity. When the light intensity is poor, there is a shortage of ATP and NADPH, as these are products from the light dependent reactions. Without these products the light independent reactions can't occur as glycerate 3-phosphate cannot be reduced. Therefore a shortage of these products will limit the rate of photosynthesis. When the carbon dioxide concentration is low, the amount of glycerate 3-phosphate produced is limited as carbon dioxide is needed for its production and therefore the rate of photosynthesis is affected. Finally, many enzymes are involved during the process of photosynthesis. At low temperatures these enzymes work slower. At high temperatures the enzymes no longer work effectively. This affects the rate of the reactions in the Calvin cycle and therefore the rate of photosynthesis will be affected.