DNA structure
7.1.1 Describe the structure of DNA, including the antiparallel strands, 3??5? linkages and hydrogen bonding between purines and pyrimidines.
DNA is made up of two strands. At one end of each strand there is a phosphate group attached to the carbon atom number 5 of the deoxyribose (this indicates the 5' terminal) and at the other end of each strand is a hydroxyl group attached to the carbon atom number 3 of the deoxyribose (this indicates the 3' terminal). The strands run in opposite directions and so we say that they are antiparallel. One strand runs in a 5'-3' direction and the other runs in a 3'-5' direction. Adjacent nucleotides are attached together via a bond between the phosphate group of one nucleotide and the carbon atom number 3 of the deoxyribose of the other nucleotide.
The bases of each strand link together via hydrogen bonds. Adenine and Guanine are purines as they have two rings in their molecular structure. Thymine and Cytosine are pyrimidines as they only have one ring in their molecular structure. A purine will link with a pyrimidine. Adenine and thymine link together by forming two hydrogen bonds while Guanine and cytosine link together by forming 3 hydrogen bonds.
7.1.2 Outline the structure of nucleosomes.
Nucleosomes consiste of DNA wrapped around eight histone proteins and held together by another histone protein.
7.1.3 State that nucleosomes help to supercoil chromosomes and help to regulate transcription.
Nucleosomes help to supercoil chromosomes and help regulate transcription.
7.1.4 Distinguish between unique or single-copy genes and highly repetitive sequences in nuclear DNA.
Not all of the base sequences in DNA are translated. Highly repetitive base sequences are not translated. They consist of sequences of between 5 and 300 bases that may be repeated up to 10 000 times. They constitute 5-45% of eukaryotic DNA. Single-copy genes or unique genes are translated and constitute a surprisingly small proportion of eukaryotic DNA.
7.1.5 State that eukaryotic genes can contain exons and introns.
Eukaryotic genes can contain exons and introns.